ME 321: FLUID MECHANICS-I

Dr. A.B.M. Toufique Hasan
Professor
Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET), Dhaka

Lecture-11
06/03/2024
Momentum Principle

Recall RTT

RTT (Reynolds Transport Theorem) relates between the system approach with finite control volume (CV) approach for a system property:

$$
\frac{d B_{\mathrm{sys}}}{d t}=\frac{d}{d t} \int_{\mathrm{CV}} \rho \beta d V+\int_{\mathrm{CS}} \rho \beta(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A
$$

$B=$ any extensive property (such as mass, momentum, energy etc.)
$b=$ any intensive property per unit mass (such as mass per mass, momentum per mass, etc.)

Conservation of linear momentum

$$
B=M \overrightarrow{\mathbf{V}}(\text { momentum }), \quad \beta=\frac{M \overrightarrow{\mathbf{V}} \text { (momentum) }}{M \text { (mass) }}=\overrightarrow{\mathbf{V}}
$$

RTT takes the form of

$$
\frac{d(M \overrightarrow{\mathbf{V}})_{\mathrm{sys}}}{d t}=\frac{d}{d t} \int_{\mathrm{CV}} \overrightarrow{\mathbf{V}} \rho d \forall+\int_{\mathrm{CS}} \overrightarrow{\mathbf{V}} \rho(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A
$$

Recall linear momentum equation

Newton's second law of motion for a system is

$$
\frac{d(M \overrightarrow{\mathbf{V}})_{\text {sys }}}{d t}=\sum \vec{F}_{\text {sys }}=\sum \vec{F}_{\begin{array}{c}
\text { contents of the } \\
\text { control volume }
\end{array}}
$$

For fluid dynamics:

$$
\sum \vec{F}_{\substack{\text { contents of the } \\ \text { control volume }}}=\sum\left(\vec{F}_{s}+\vec{F}_{B}\right)=\frac{d}{d t} \int_{\mathrm{CV}} \overrightarrow{\mathbf{V}} \rho d V+\int_{\mathrm{CS}} \overrightarrow{\mathbf{V}} \rho(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A
$$

** Vector equation
$\sum \vec{F}$: External forces acting on the content of the control volume (CV) (such as pressure force, viscous shear force, gravity etc.)

Momentum Principle

The above expression could be simplified considerably if a flow system has only one entrance and one exit and if the flow is steady:

$$
\begin{aligned}
& \sum \vec{F}_{\mathrm{CV}}=\frac{d}{d t} \int_{\mathrm{CV}}^{T} \overrightarrow{\mathbf{V}} \rho d \not+\int_{\mathrm{CS}} \overrightarrow{\mathbf{V}} \rho(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A \\
\Rightarrow & \sum \vec{F}_{\mathrm{CV}}=\int_{\mathrm{CS}} \overrightarrow{\mathbf{V}} \rho(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A \\
\Rightarrow & \sum \vec{F}_{\mathrm{CV}}=\rho_{2} A_{2} V_{2} \overrightarrow{\mathbf{V}}_{2}-\rho_{1} A_{1} V_{1} \overrightarrow{\mathbf{V}}_{\mathbf{1}}
\end{aligned}
$$

Using continuity:

$$
\dot{m}=\rho_{1} A_{1} V_{1}=\rho_{2} A_{2} V_{2} \quad \text { (mass flow rate) }
$$

Then:

$$
\sum \vec{F}_{\mathrm{CV}}=\dot{m}\left(\overrightarrow{\mathbf{V}}_{2}-\overrightarrow{\mathbf{V}}_{1}\right)
$$

Note that the momentum equation is a vector equation which represents three scalar equations:

$$
\begin{aligned}
& x: \sum F_{x}=\dot{m}\left(V_{2 x}-V_{1 x}\right) \\
& y: \sum F_{y}=\dot{m}\left(V_{2 y}-V_{1 y}\right) \\
& z: \sum F_{z}=\dot{m}\left(V_{2 z}-V_{1 z}\right)
\end{aligned}
$$

This is the fundamental principle which drives the turbomachinery (propulsion nozzle in jet engine, turbine, compressor cascade etc.)

Problem \# 1

Water flows steadily through the 90° reducing elbow as shown in figure. At the inlet of the elbow, the absolute pressure is 220 kPa and the cross-sectional area is $0.01 \mathrm{~m}^{2}$. At the outlet, the cross-sectional area is $0.0025 \mathrm{~m}^{2}$ and the velocity is $16 \mathrm{~m} / \mathrm{s}$. The elbow discharges to the atmosphere. Determine the force required to hold the elbow in place.

Solution:

From continuity equation:

$$
\begin{aligned}
Q_{1}=Q_{2} & \Rightarrow A_{1} V_{1}=A_{2} V_{2} \\
\Rightarrow & (0.01) V_{1}=(0.0025)(16) \\
& \therefore V_{1}=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

from steady flow momentum principle:

$$
\begin{aligned}
& \sum \vec{F}_{\mathrm{CV}}=\int_{\mathrm{CS}} \overrightarrow{\mathbf{V}} \rho(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A \\
& \rightarrow x: \sum F_{x}=\dot{m}\left(V_{2 x}-V_{1 x}\right) \\
& \Rightarrow-R_{x}+p_{1} A_{1}=\dot{m}\left(V_{2 x}-V_{1 x}\right)=\dot{m}\left(0-V_{1 x}\right)=-\left(\rho V_{1} A_{1}\right) V_{1 x} \\
& \Rightarrow R_{x}=\left(\rho V_{1} A_{1}\right) V_{1}+p_{1} A_{1}
\end{aligned}
$$

$$
p_{2}=101 \mathrm{kPa} \mathrm{abs}
$$

$=0 \mathrm{kPa}$ gage

Problem \# 1

cont...

Then

$$
\begin{aligned}
& \Rightarrow R_{x}=\left(\rho V_{1} A_{1}\right) V_{1}+p_{1} A_{1} \\
& \Rightarrow R_{x}=\left(119 \times 10^{3}\right)(0.01)+(1000 \times 4 \times 0.01)(4) \\
& \therefore R_{x}=1.35 \mathrm{kN}
\end{aligned}
$$

Now, along y-axis:

$$
\begin{aligned}
& \uparrow y: \sum R_{y}=\dot{m}\left(V_{2 y}-V_{1 y}\right) \\
& \quad \Rightarrow-R_{y}=\dot{m}\left(V_{2 y}-V_{1 y}\right)=\dot{m}\left(-V_{2 y}-0\right)=-\left(\rho V_{2} A_{2}\right) V_{2} \quad ;\left(V_{2} \downarrow-v e\right) \\
& \Rightarrow R_{y}=(1000 \times 16 \times 0.0025)(16) \\
& \quad \therefore R_{y}=0.64 \mathrm{kN}
\end{aligned}
$$

So, the magnitude of resultant force is

$$
\begin{aligned}
& R=\sqrt{R_{x}^{2}+R_{y}^{2}} \\
\Rightarrow & R=\sqrt{1.35^{2}+0.64^{2}} \\
\Rightarrow & R=1.49 \mathrm{kN} \\
\theta & =\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=25.37^{\circ} \text { with }(-\mathrm{ve}) x-\text { axis }
\end{aligned}
$$

Problem \# 2

Water flows through a horizontal pipe bend and exits into the atmosphere as shown in figure. The flow rate is $30 \mathrm{~m}^{3} / \mathrm{hr}$. Calculate the force in each of the rods holding the pipe bend in position. Neglect body forces and viscous effects and shear force in the rods.

Solution:

Now, from continuity equation:

$$
\begin{aligned}
Q_{1}=Q_{2} \Rightarrow & A_{1} V_{1}=A_{2} V_{2}=30 /(60 \times 60) \\
\Rightarrow & \frac{\pi}{4}\left(75 \times 10^{-3}\right)^{2} V_{1}=\frac{\pi}{4}\left(40 \times 10^{-3}\right)^{2} V_{2}=8.33 \times 10^{-3} \\
& \therefore V_{1}=1.89 \mathrm{~m} / \mathrm{s} \\
& V_{2}=6.63 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Use Bernoulli equation to determine the pressure at section 1 :

$$
\begin{aligned}
& \frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2} \\
\Rightarrow & \frac{p_{1}}{\gamma}+\frac{1.89^{2}}{2 g}+0=\frac{0}{\gamma}+\frac{6.63^{2}}{2 g}+0 \\
\Rightarrow & p_{1}=20192.4 \mathrm{~Pa}
\end{aligned}
$$

Problem \# 2

cont...

From steady flow momentum principle:

$$
\sum \vec{F}_{\mathrm{CV}}=\int_{\mathrm{CS}} \overrightarrow{\mathbf{V}} \rho(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A
$$

$\rightarrow x: \quad \sum F_{x}=\dot{m}\left(V_{2 x}-V_{1 x}\right)$
$\Rightarrow-R_{x}+p_{1} A_{1}=\dot{m}\left(V_{2 x}-V_{1 x}\right)=\dot{m}\left(0-V_{1 x}\right)=-\dot{m} V_{1 x}$
$\Rightarrow R_{x}=\dot{m} V_{1 x}+p_{1} A_{1}$
$\Rightarrow R_{x}=\frac{30}{(60 \times 60)}(1000)(1.89)+(20192.4)\left(\frac{\pi}{4}\left(75 \times 10^{-3}\right)^{2}\right)$
$\therefore R_{x}=104.95 \mathrm{~N}$
For y-direction:
$\uparrow y: \sum F_{y}=\dot{m}\left(V_{2 y}-V_{1 y}\right)$
$\Rightarrow R_{y}=\dot{m}\left(V_{2 y}-V_{1 y}\right)=\dot{m}\left(V_{2 y}-0\right)=\dot{m} V_{2 y}$
$\Rightarrow R_{y}=\dot{m} V_{2 y}$
$\Rightarrow R_{y}=\frac{30}{(60 \times 60)}(1000)(6.63)$
$\therefore R_{y}=55.25 \mathrm{~N}$

Problem \# 3

Determine the magnitude and direction of the anchoring force needed to hold the horizontal elbow and nozzle combination shown in figure in place. Atmospheric pressure is 100 kPa (abs) The gage pressure at section (1) is 100 kPa . At section (2), the water exits to the atmosphere.

Solution: from steady flow momentum principle;

$$
\Rightarrow \sum \vec{F}_{\mathrm{CV}}=\int_{\mathrm{CS}} \overrightarrow{\mathbf{v}} \rho(\overrightarrow{\mathbf{v}} \cdot \hat{\mathbf{n}}) d A
$$

$$
\begin{aligned}
& \rightarrow x: \sum F_{x}=\dot{m}\left(V_{2 x}-V_{1 x}\right) \\
& \quad \Rightarrow-R_{x}+p_{1} A_{1}=\dot{m}\left(V_{2 x}-V_{1 x}\right)=\rho V_{1} A_{1}\left(-V_{2}-V_{1}\right) ; \quad\left(V_{2} \leftarrow-v e\right) \\
& \quad \Rightarrow R_{x}=p_{1} A_{1}+\left(\rho V_{1} A_{1}\right)\left(V_{1}+V_{2}\right)
\end{aligned}
$$

Now, from continuity equation: $\quad Q_{1}=Q_{2} \quad \Rightarrow A_{1} V_{1}=A_{2} V_{2}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{\pi}{4} d_{1}^{2}\right)\left(V_{1}\right)=\left(\frac{\pi}{4} d_{2}^{2}\right)\left(V_{2}\right) \\
& \Rightarrow V_{2}=\left(\frac{d_{1}}{d_{2}}\right)^{2} V_{1} \\
& \therefore V_{2}=7.03 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem \# 3

cont...

Then,

$$
\rightarrow x: \Rightarrow R_{x}=p_{1} A_{1}+\left(\rho V_{1} A_{1}\right)\left(V_{1}+V_{2}\right)
$$

$$
\Rightarrow F_{x}=\left(100 \times 10^{3}\right)\left(\frac{\pi}{4} \times 0.3^{2}\right)+\left(1000 \times 2 \times \frac{\pi}{4} \times 0.3^{2}\right)(2+7.03)
$$

$$
\therefore F_{x}=8.35 \mathrm{kN}
$$

Now, along y-axis:

$$
\uparrow y:-R_{y}=\dot{m}\left(V_{2 y}-V_{1 y}\right)=\dot{m}(0-0)=0 \quad \therefore R_{y}=0
$$

So, the magnitude of resultant anchoring force is

$$
\begin{aligned}
& R=\sqrt{R_{x}^{2}+R_{y}^{2}} \\
\Rightarrow & R=\sqrt{8.35^{2}+0^{2}} \\
\Rightarrow & R=8.35 \mathrm{kN} \\
\theta & =\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=0^{\circ} \text { with }(-\mathrm{ve}) x-\text { axis }
\end{aligned}
$$

Problem 4

The $6-\mathrm{cm}$-diameter $20^{\circ} \mathrm{C}$ water jet strikes a plate containing a hole of 4cm diameter. Part of the jet passes through the hole, and part is deflected. Determine the horizontal force required to hold the plate.

Solution:

$$
\begin{aligned}
& Q_{1}=\frac{\pi}{4} d_{1}^{2} V_{1}=\frac{\pi}{4}(0.06)^{2}(25)=0.0707 \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{2}=\frac{\pi}{4} d_{2}^{2} V_{2}=\frac{\pi}{4}(0.04)^{2}(25)=0.0314 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

from steady flow momentum principle:

$$
\sum \vec{F}_{\mathrm{CV}}=\int_{\mathrm{CS}} \overrightarrow{\mathbf{V}} \rho(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A
$$

$$
\begin{aligned}
& \rightarrow x: \sum F_{x}=\left(\dot{m} V_{x}\right)_{\text {out }}-\left(\dot{m} V_{x}\right)_{\text {in }} \\
& \quad \Rightarrow-R_{x}=\left(\dot{m}_{2} V_{2 x}+\dot{m}_{3} V_{3 x}+\dot{m}_{4} V_{4 x}\right)-\dot{m}_{1} V_{1 x} \\
& \Rightarrow-R_{x}=\left((1000)(0.0314)(25)+\dot{m}_{3}(0)+\dot{m}_{4}(0)\right)-(1000)(0.0707)(25) \\
& \left.\therefore \quad R_{x}=982.5 \mathrm{~N} \quad \text { (to left }\right) \quad \text { Ans. }
\end{aligned}
$$

Problem 5

(a) The jet engine on a test stand admits air at $20^{\circ} \mathrm{C}$ and 1 atm at section 1 , where $A_{1}=0.5 \mathrm{~m}^{2}$ and $V_{1}=250 \mathrm{~m} / \mathrm{s}$. The fuel-to-air ratio is 1:30. The air leaves section 2 at atmospheric pressure and higher temperature, where $\mathrm{V}_{2}=900 \mathrm{~m} / \mathrm{s}$ and $\mathrm{A}_{2}=0.4 \mathrm{~m}^{2}$. Compute the horizontal test stand reaction \mathbf{R}_{x} needed to hold this engine fixed.

Solution:

$$
\begin{gathered}
\rho_{1}=\frac{p}{R T}=\frac{101325}{(287)(273+20)}=1.205 \mathrm{~kg} / \mathrm{m}^{3} \\
\dot{m}_{1}=\rho_{1} A_{1} V_{1}=(1.205)(0.5)(250)=150.6 \mathrm{~kg} / \mathrm{s}
\end{gathered}
$$

The fuel-to-air ratio is $1: 30$;

$$
\therefore \dot{m}_{2}=150.6\left(1+\frac{1}{30}\right)=155.6 \mathrm{~kg} / \mathrm{s}
$$

Problem 5

from steady flow momentum principle:

$$
\sum \vec{F}_{\mathrm{CV}}=\int_{\mathrm{CS}} \overrightarrow{\mathbf{V}} \rho(\overrightarrow{\mathbf{V}} \cdot \hat{\mathbf{n}}) d A
$$

$$
\begin{aligned}
& \rightarrow x: \sum F_{x}=\left(\dot{m} V_{x}\right)_{\text {out }}-\left(\dot{m} V_{x}\right)_{\text {in }} \\
& \Rightarrow R_{x}=\dot{m}_{2} V_{2 x}-\left(\dot{m}_{1} V_{1 x}+\dot{m}_{\text {fuel }} V_{f, x}\right) \\
& \Rightarrow R_{x}=(155.6)(900)-\left((150.6)(250)+\dot{m}_{\text {fuel }}(0)\right) \\
& \left.\therefore \quad R_{x}=102.4 \mathrm{kN} \quad \text { (to right }\right) \quad \text { Ans. }
\end{aligned}
$$

Problem 5

(b) Suppose that a deflector is deployed at the exit of the jet engine of Prob. 5(a), as shown in Figure. What will the reaction \mathbf{R}_{x} on the test stand be now?

$$
\begin{aligned}
& \rightarrow x: \sum F_{x}=\left(\dot{m} V_{x}\right)_{\text {out }}-\left(\dot{m} V_{x}\right)_{\text {in }} \\
& \quad \Rightarrow R_{x}=\left(\dot{m}_{2} V_{2 x}+\dot{m}_{3} V_{3 x}\right)-\left(\dot{m}_{1} V_{1 x}+\dot{m}_{\text {fuel }} V_{f, x}\right) \\
& \quad \Rightarrow R_{x}=\left(\left(\frac{155.6}{2}\right)\left(-900 \cos 45^{\circ}\right)+\left(\frac{155.6}{2}\right)\left(-900 \cos 45^{\circ}\right)\right)-\left((150.6)(250)+\dot{m}_{\text {fuel }}(0)\right) \\
& \Rightarrow R_{x}=-137.6 \mathrm{kN} \\
& \therefore \quad R_{x}=137.6 \mathrm{kN} \text { (to left) } \quad \text { Ans. (b) }
\end{aligned}
$$

